
MTH 264 Introduction to Matrix Algebra - Summer 2023.

LN1B. Matrices and Matrix Operations.

These lecture notes are mostly lifted from the text Matrix and Power Series, Lee and Scarborough, custom 5th

edition. This document highlights which parts of the text are used in the lecture sessions.

Part 1. Matrices in Rm×n

Definition 1B.1. Matrices

A matrix is a doubly-indexed tuple of real numbers. We say that a matrix A is an (m × n)-matrix (read as

an m by n matrix) if the first index goes through {1, 2, ...,m} and the second index goes through {1, 2, ..., n}.
Conventionally, we write a matrix A as the following:

A =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

 =
(
a1 a2 · · · an

)
with ai =


a1,i

a2,i
...

am,i

 for i ∈ {1, 2, ..., n}

When A is listed element-wise, the convention is to have the first index represent the row index and the

second index represent the column index. i.e. A being an (m × n)-matrix states that A has m rows and n

columns.

I do have to remark that the notation for the matrix in terms of its columns may be non-standard. However,

we add this notation since it makes it easier (at least for me) to remember how to do matrix operations as you’ll see

later.

Theorem 1B.2. Rm×n is a Vector Space

Let Rm×n denote the set of all m× n matrices. Then, Rm×n is a vector space with R as its set of scalars with

matrix addition defined as

A+B =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

+


b1,1 b1,2 · · · b1,n

b2,1 b2,2 · · · b2,n
...

...
. . .

...

bm,1 bm,2 · · · bm,n



=


a1,1 + b1,1 a1,2 + b1,2 · · · a1,n + b1,n

a2,1 + b2,1 a2,2 + b2,2 · · · a2,n + b2,n
...

...
. . .

...

am,1 + bm,1 am,2 + bm,2 · · · am,n + bm,n

 for all A,B ∈ Rm×n

and scalar multiplication defined as:

kA = k


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

 =


ka1,1 ka1,2 · · · ka1,n

ka2,1 ka2,2 · · · ka2,n
...

...
. . .

...

kam,1 kam,2 · · · kam,n

 for all k ∈ R
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Observe that our definitions of matrix addition and scalar multiplication matches that of vectors. This is

intentional since we want to combine vectors and matrices later on. Additionally, the theorem above lets us use the

vector space properties, e.g. we can conclude that matrix addition is commutative and therefore A +B = B +A.

As said previously, it should be relatively obvious that these properties comes from the properties of R and that

knowing the exact list of vector space properties/axioms is not critical.

Theorem 1B.3. Zero Matrix

The zero matrix, denoted as 0 = 0m×n ∈ Rm×n, the matrix with all entries equaling 0. When the dimension

of the matrices involved are clear/arbitrary, we usually suppress the subscript. The zero matrix is the matrix

such that for all matrices A, A+ 0 = A = 0+A.

Much like the zero vector, this serves as the additive identity for matrix addition.

Definition 1B.4. Column and Row Vectors

A column vector with n entries is an (n× 1)-matrix and a row vector with m entries is an (1×m)-matrix.

Convention 1B.5. Notation on Vectors and Matrices

We say that A ∈ Rm×n to refer to A being an (m× n)-matrix with real number coefficients.

When the matrix has a single uppercase letter as its name, we typically denote its entries by indexing the

corresponding lowercase letter. However, when the matrix has a more complicated label, we use the notation

(A)i,j to denote the entry of A at row i and column j.

For this course, when we call vectors in relation to matrices, we assume that vectors v ∈ Rm are presented

as column vectors unless otherwise specified; and we may write A =
(
a1 a2 · · · an

)
∈ Rm×n to refer to

the columns of A as column vectors ai ∈ Rm for i = 1, 2, ..., n.

The vector space structure is limited to the family of vectors Rm×n for fixed m and n. That is, if the dimensions

of the matrices do not match, matrix addition is not defined.

Looking more generally, we can define multiplication on the family of all matrices. We first start with the matrix

product of one matrix against one vector.

Definition 1B.6. Matrix-Vector Multiplication

Let A ∈ Rm×n and let v = (v1, v2, ..., vn) ∈ Rn. Describe A using column vectors a1, ...,an ∈ Rn. We define

the matrix-vector product Av ∈ Rm by

Av =

 | | |
a1 a2 · · · an

| | |



v1

v2
...

vn

 = v1a1 + v2a2 + ...vnan

This definition also gives us the definition of row vector by a column vector multiplication.

Observe that if the number of columns in the right matrix does not match the number of rows in the left column

vector, the matrix-vector product is not defined.

As a note, it is possible to express the matrix-vector product using row vectors. However, we introduce matrix
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multiplication this way since having column vectors allow us to express linear transformations in terms of left

multiplication by a matrix (as we’ll see later). If we were to use row vectors, we need to do right multiplication by

a matrix.

However, most of the theory (at least in the text) of linear transformations are expressed typically by left

multiplication matrices. Having row vectors requires us to translate the results and theorems in terms of right

multiplication matrices – which, while possible, involves a lot of work.

We extend the previous definition to get the matrix product.

Definition 1B.7. Matrix Multiplication

Let A ∈ Rm×n and let B ∈ Rn×r with column vectors b1, ...,br. The product AB ∈ Rm×r is defined as

AB = A

 | | |
b1 b2 · · · br

| | |

 =

 | | |
Ab1 Ab2 · · · Abr

| | |



Observe that the product AB is only defined when the number of rows for A match the number of columns for

B. One way to think about this is to look at their dimensions side by side:

(dimension of A)︷ ︸︸ ︷
(m× n) (n× r)︸ ︷︷ ︸

(dimension of B)

The matrix product AB is defined if and only if the inner dimensions, as written above, are the same.

We also add another way to view matrix multiplication that might be easier to use when calculating matrix

products by hand.

Theorem 1B.8. Equivalent Definition of Matrix-Vector Multiplication

Let A ∈ Rm×n and let v ∈ Rn be a column vector. Describe A using row vectors a1,a2, ...,am ∈ Rn. Then,

Av =


— a1 —

— a2 —
...

— am —

v =


a1v

a2v
...

amv


Observe that aiv is the multiplication of a row vector by a column vector.

Theorem 1B.9. Equivalent Definition of Matrix Multiplication

Let A ∈ Rm×n with row vectors a1, ...,am and let B ∈ Rn×r with column vectors b1, ...,br. Observe that

ai and bj all have n entries each. Define the matrix product AB ∈ Rm×r by the following:

AB =


— a1 —

— a2 —
...

— am —


 | | |
b1 b2 · · · br

| | |

 =


a1b1 a1b2 · · · a1br

a2b1 a2b2 · · · a2br

...
...

. . .
...

amb1 amb2 · · · ambr


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Observe that in general, matrix multiplication is not commutative. Therefore, when we multiply matrices, we

need to specify whether we mean left multiplication or right multiplication. For example, multiplying A by B

on the left refers to the matrix product BA.

Example 1B.9.1. Let A =

√
2

2

(
1 −1

1 1

)
and let B =

(
0 −1

1 0

)
. Then, AB =

√
2

2

(
−1 −1

1 −1

)
= BA.

Example 1B.9.2. Let R =

√
2

2

(
1 −1

1 1

)
and let Q =

(
−1 0

0 1

)
.

Then, RQ =

√
2

2

(
−1 −1

−1 1

)
but QR =

√
2

2

(
−1 1

1 1

)
, i.e. RQ ̸= QR.

Theorem 1B.10. Properties of Matrix Multiplication

Let A,B,C be matrices. The following identities apply when the relevant products are defined.

(a) Associativity. (AB)C = A(BC). With this, we can state ABC without ambiguity.

(b) Left Distributivity over Addition. A(B+C) = AB+AC.

(c) Right Distributivity over Addition. (B+C)A = BA+CA.

(d) Compatibility with Scalar Multiplication. For all k ∈ R, k(AB) = (kA)B = A(kB). With this,

we can write kAB without ambiguity.

Lastly, we then introduce some more notation to make our discussions easier.

Definition 1B.11. Square Matrices

Let A ∈ Rm×n. Then, A is a square matrix if and only if m = n. Equivalently, A ∈ Rn×n is a square matrix.

Part 2. Matrix Inverses.

Recall that for real numbers: multiplication can be undone by a division operation. For example, multiplication

by 2 can be undone by multiplying by 1
2 (equivalently, dividing by two). Here, we say that 1

2 is the multiplicative

inverse of 2 since (2)( 12 ) = 1 and 1 is the multiplicative identity of the real numbers.

We then extend this concept to the family of matrices since we do have a notion of multiplication. However,

first, we must introduce the multiplicative identity for the family of matrices.

Definition 1B.12. Identity Matrix

The identity matrix In ∈ Rn×n is the square matrix with 1’s on the main diagonal and 0’s everywhere else.

That is,

In =


1 0 · · · 0

0 1 · · · 0

0 0
. . . 0

0 0 · · · 1


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Theorem 1B.13. Multiplicative Identity of the Family of Matrices

For any matrix A ∈ Rm×n, ImA = A and AIn = A. Therefore, In is the multiplicative identity of matrix

multiplication. In other words, any matrix multiplied by the appropriate identity matrix (either on the left or

on the right) yields the same matrix. When the relevant dimension is clear from context, we may suppress the

subscript and write I.

Finally, we can introduce the notion of multiplicative inverses.

Definition 1B.14. Matrix Inverses

Let A ∈ Rn×n be a square matrix. If there exists a matrix B ∈ Rn×n such that AB = BA = In, then A is

called invertible and B is called an inverse of A.

There are two important notes about this definition:

1. There is no analog for matrix inverses for non-square matrices. If A ∈ Rm×n with m ̸= n, the identity for

left multiplication is Im but the identity for right multiplication is In. We would need another definition (if we

can make a reasonable definition, that is) for non-square matrices. That is not covered in this course.

2. Not all matrices are invertible – which is why we’ve given matrices that have an inverse a name. We’ll see

more theorems later that would tell us if an matrix is invertible or not.

Observe, from the definition, that there are two conditions for invertibility: for a square matrix A, AA−1 = I

and A−1A = I. So, to call a matrix B the inverse of A, we need to check AB = I and BA = I. To make our

calculations easier, we can use the following theorem.

Theorem 1B.15. Uniqueness of Inverse Matrices

Let A ∈ Rn×n be an invertible matrix.

(a) The matrix B such that AB = BA = In is uniquely determined by A. Therefore, we can call B the

inverse of A and denote the inverse as A−1 := B.

(b) If we’ve found a matrix B ∈ Rn×n such that AB = In, then A−1 = B.

(c) If we’ve found a matrix B ∈ Rn×n such that BA = In, then A−1 = B.

Using results (b) and (c) reduces the number of equations we need to check and is incredibly useful. For

example, we will later apply Gaussian elimination as a method of finding inverses of matrices A ∈ Rn×n. That

results in a matrix B ∈ Rn×n such that BA = In. Using the theorem above, we can conclude that A−1 = B.

Lastly, we introduce properties of the matrix inverse as an operator on the space of invertible matrices.

Theorem 1B.16. Properties of Matrix Inverses

(a) (Inverse of Identity Matrices). For all identity matrices In, In is invertible and In
−1 = In.

(b) (Involution). For all invertible matrices A ∈ Rn×n, (A−1)−1 = A.

(c) (Inverse Compatibility with Scalar Multiplication). For all invertible matrices A ∈ Rn× n and

nonzero scalars k ∈ R, (kA)−1 = k−1A−1.

(d) (Co-Distributivity over Matrix Multiplication). For all invertible matrices A,B ∈ Rn×n, the

product AB is invertible and (AB)−1 = B−1A−1.
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Do note that some of these labels (i.e. inverse compatibility and co-distributivity) are somewhat non-standard

terms. We add them here for the following reasons: (1) The names make sense in some contexts. Compatibility

with scalar multiplication generally means you can “factor” out the scalar outside the operator, similarly with the

derivative and anti-derivative operator on function spaces. We add inverse as a prefix since pulling out the scalar

involves taking its multiplicative inverse. With distributivity, the co- prefix implies that we have to reverse the order

of the matrices upon distribution; (2) It makes it easier to refer to a property when explaining things.

Finally, finding matrix inverses and even checking whether a matrix is invertible or not is a non-trivial problem

in high dimensions. We will cover more results about invertibility later as we introduce more concepts and the naive

approach of finding inverses can be computationally expensive. Fortunately, we do have an easy formula and check

in the case of R2×2.

Theorem 1B.17. Matrix Inverses in R2×2

Let A =

(
a b

c d

)
∈ R2×2. Then, A is invertible if and only if ad − bc ̸= 0. In the case where A is invertible,

its inverse A−1 is given by

A−1 =
1

ad− bc

(
d −b

−c a

)

Later, we’ll discuss how to use Gaussian Elimination to find inverses.

Part 3. Matrix Transpose.

Lastly, we’ll introduce the transpose of a matrix.

Definition 1B.18. Transpose of a Matrix

Let A ∈ Rm×n. The transpose of A, denoted as AT , is the matrix AT ∈ Rn×m where
(
AT
)
j,i

= Ai,j .

Another way to think about the transpose is in terms of the main diagonal, defined below.

Definition 1B.19. Main Diagonal of a Matrix

Let A ∈ Rm×n. The main diagonal of A are the entries (A)i,i with index by i = 1, 2, ...,min{m,n}. Elements

not on the main diagonal are called off-diagonal elements.

Do note that when we use the main diagonal as a term, we usually imply that we’re working with square matrices

(i.e. A ∈ Rn×n). However, this definition extends nicely to non-square matrices to help us understand transposes.

Here, you can think of the transpose as flipping the matrix about its main diagonal where columns become rows

and rows become columns.

The transpose, as an operator on the space of matrices, also has some useful properties.

Theorem 1B.20. Properties of the Matrix Transpose

(a) (Involution). For all matrices A ∈ Rm×n, (AT )T = A.

(b) (Distributivity over Matrix Addition). For all matrices A,B ∈ Rm×n, (A+B)T = AT +BT .

(c) (Co-Distributivity over Matrix Multiplication). For all matrices A,B such that the product

AB is defined, (AB)T = BTAT .
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(d) (Compatibility with Scalar Multiplication) For all matrices A and scalars k, (kA)T = kAT .

(e) (Commutativity over Matrix Inverses). For all invertible matricesA, AT is invertible with inverse

(AT )−1 = (A−1)T .

(f) (Products of Transposes) For all matrices A ∈ Rm×n, the matrix products AAT ∈ Rm×m and

ATA ∈ Rn×n are both defined.

These properties may be useful for us later when dealing with calculations that involve transposes.
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